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 Partial order sets: Definition, Partial order sets, 

Combination of partial order sets, Hasse diagram. 

Lattices: Definition, Properties of lattices – Bounded, 

Complemented, Modular and Complete lattice. Boolean 

Algebra: Introduction, Axioms and Theorems of Boolean 

algebra ,Algebraic manipulation of Boolean expressions. 

Simplification of Boolean Functions, Karnaugh maps, 
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Logic gates, Digital circuits and Boolean algebra.  
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Partial orders, Lattices, 
etc. 

 
 



In our context… 
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• We aim at computing properties on programs 

• How can we represent these properties? Which kind of algebraic 

features have to be satisfied on these representations? 

• Which conditions guarantee that this computation terminates? 



Motivating Example (1) 
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• Consider the renovation of the building of a firm. 

In this process several tasks are undertaken 

– Remove asbestos 

– Replace windows 

– Paint walls 

– Refinish floors 

– Assign offices 

– Move in office furniture 

– … 



Motivating Example (2) 
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• Clearly, some things had to be done before others could begin 

– Asbestos had to be removed before anything (except assigning 

offices) 

– Painting walls had to be done before refinishing floors to avoid 

ruining them, etc. 

• On the other hand, several things could be done concurrently: 

– Painting could be done while replacing the windows 

– Assigning offices could be done at anytime before moving in 

office furniture 

• This scenario can be nicely modeled using partial orderings 



Partial Orderings: Definitions 
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• Definitions: 

– A relation R on a set S is called a partial order if it is 

• Reflexive 

• Antisymmetric 

• Transitive 

– A set S together with a partial ordering R is called a partially 

ordered set (poset, for short) and is denote (S,R) 

• Partial orderings are used to give an order to sets that may not have 

a natural one 

• In our renovation example, we could define an ordering such that 

(a,b)R if ‘a must be done before b can be done’ 



Partial Orderings: Notation 
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• We use the notation: 

– a p b, when (a,b)R 

– a p b, when (a,b)R and ab 

• The notation p is not to be mistaken for “less than” (p versus ≤) 

• The notation p is used to denote any partial ordering 



Comparability: Definition 
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• Definition: 

– The elements a and b of a poset (S, p) are called comparable if 

either apb or bpa. 

– When for a,bS, we have neither apb nor bpa, we say that a,b 

are incomparable 

• Consider again our renovation example 

– Remove Asbestos p ai for all activities ai except assign offices 

– Paint walls p Refinish floors 

– Some tasks are incomparable: Replacing windows can be done 

before, after, or during the assignment of offices 



Total orders: Definition 
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• Definition: 

– If (S,p) is a poset and every two elements of S are comparable, 

S is called a totally ordered set. 

– The relation p is said to be a total order 

• Example 

– The relation “less than or equal to” over the set of integers (Z, ) 

since for every a,bZ, it must be the case that ab or ba 

– What happens if we replace  with <? 

 
The relation < is not reflexive, and (Z,<) is not a poset 



Hasse Diagrams 
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• Like relations and functions, partial orders have a convenient graphical 

representation: Hasse Diagrams 

– Consider the digraph representation of a partial order 

– Because we are dealing with a partial order, we know that the 

relation must be reflexive and transitive 

– Thus, we can simplify the graph as follows 

• Remove all self loops 

• Remove all transitive edges 

• Remove directions on edges assuming that they are oriented 

upwards 

– The resulting diagram is far simpler 



Hasse Diagram: Example 
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a5 

 

 
a3 

a4 
a5 

a2 

a3 

a1 

a4 

a2 

a1 



Hasse Diagrams: Example (1) 
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• Of course, you need not always start with the complete relation in 

the partial order and then trim everything. 

• Rather, you can build a Hasse Diagram directly from the partial 

order 

• Example: Draw the Hasse Diagram 

– for the following partial ordering: {(a,b) | a|b } 

– on the set {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60} 

– (these are the divisors of 60 which form the basis of the ancient 

Babylonian base-60 numeral system) 



Hasse Diagram: Example (2) 
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12 20 30 

6 10 

2 3 5 
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Example 
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c d e f 

 
 
 
 

 

g 
 

a b 
 

L= {a,b,c,d,e,f,g} 

p ={(a,c), (a,e), (b,d), (b,f), (c,g), (d,g), (e,g), (f,g)}RT 

 
(L, p) is a partial order 



Example 
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6 L= N (natural numbers) 

5 p ={(0,1), (1,2), (2,3), (3,4), (4,5),…}RT 

4 

3 (L, p) is a totally ordered set (infinite) 

2 

1 

0 



Example 
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9 

8 

7 
L= N (natural numbers) 

6 
p ={(n,m):  k such that m=n*k} 

5 

4 (L, p) is a partially ordered set (infinite) 

3 

2 
 

 
 



Example 
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6 

2 

1 

 

• On the same set E={1,2,3,4,6,12} we can define different partial 

orders: 
 
 
 
 
 
 

 

12 12 

6 
12 

6
 

4 4 4 
3 

3 2 

2 3 

1 1 



Example 
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• All possible partial orders on a set of three elements 

(modulo renaming) 
 
 
 



Extremal Elements: Summary 
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We will define the following terms: 

• A maximal/minimal element in a poset (S, p) 

• The maximum (greatest)/minimum (least) element of a poset (S, p) 

• An upper/lower bound element of a subset A of a poset (S, p) 

• The greatest lower/least upper bound element of a subset A of a 

poset (S, p) 



Extremal Elements: Maximal 
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• Definition: An element a in a poset (S, p) is called maximal if it is 

not less than any other element in S. That is: (bS (apb)) 

• If there is one unique maximal element a, we call it the maximum 

element (or the greatest element) 



Extremal Elements: Minimal 
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• Definition: An element a in a poset (S, p) is called minimal if it is not 

greater than any other element in S. That is: (bS (bpa)) 

• If there is one unique minimal element a, we call it the minimum 

element (or the least element) 



Extremal Elements: Upper Bound 
 

DISCRETE MATHEMATICS    BCA IV SEM 

 

• Definition: Let (S,p) be a poset and let AS. If u is an element of S 

such that a p u for all aA then u is an upper bound of A 

• An element x that is an upper bound on a subset A and is less than 

all other upper bounds on A is called the least upper bound on A. 

We abbreviate it as lub. 



Extremal Elements: Lower Bound 
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• Definition: Let (S,p) be a poset and let AS. If l is an element of S 

such that l p a for all aA then l is an lower bound of A 

• An element x that is a lower bound on a subset A and is greater than 

all other lower bounds on A is called the greatest lower bound on A. 

We abbreviate it glb. 



Example 
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N x N 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(x1,y1) N x N (x2,y2)  x1N x2  y1N y2 

Y 



Example 
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N ´ N  

 
Y lub(Y) 

 
upper bounds of Y 

 

 
 

 

 

glb(Y) 
 

 

 
 

lower bounds of Y 
 

 

 
 

(x1,y1) N x N (x2,y2)  x1N x2  y1N y2 



Extremal Elements: Example 1 
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c d 

 

 
a b 

 

What are the minimal, maximal, minimum, maximum elements? 
 
 

• Minimal: {a,b} 

• Maximal: {c,d} 

• There are no unique minimal or maximal elements, thus no 

minimum or maximum 



Extremal Elements: Example 2 
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h 

e 

b 

 

Give lower/upper bounds & 

glb/lub of the sets: 

{d,e,f}, {a,c} and {b,d} 

{d,e,f} 

• Lower bounds: , thus no glb 

• Upper bounds: , thus no lub 
 
 

 

{a,c} 
g i • Lower bounds: , thus no glb 

• Upper bounds: {h}, lub: h 

 
d
 

f
 {b,d} 

• Lower bounds: {b}, glb: b 

a c • Upper bounds: {d,g}, lub: d 

because dpg 



Extremal Elements: Example 3 
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g 

e 

c 

a 

 
 

 

• Minimal/Maximal elements? 
i j 

• Minimal & Minimum element: a 

• Maximal elements: b,d,i,j 

f h 
• Bounds, glb, lub of {c,e}? 

• Lower bounds: {a,c}, thus glb is c 

• Upper bounds: {e,f,g,h,i,j}, thus lub is e 
 
 

 

b d • Bounds, glb, lub of {b,i}? 

• Lower bounds: {a}, thus glb is c 

• Upper bounds: , thus lub DNE 



Lattices 
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• A special structure arises when every pair of elements in a poset 

has an lub and a glb 

• Definition: A lattice is a partially ordered set in which every pair of 

elements has both 

– a least upper bound and 

– a greatest lower bound 



Lattices: Example 1 
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g 

e 

c 

a 

 
 

 

• Is the example from before a i j 

lattice? 

 
f h 

 
 

 

• No, because the pair {b,c} 

does not have a least upper 

bound 

b d 



Lattices: Example 2 
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j 

g 

e 

c 

a 

 
 

 

• What if we modified it as shown 

here? 
i
 

f h 
 
 

 

• Yes, because for any pair, 

there is an lub & a glb 
 
 

 

b d 



A Lattice Or Not a Lattice? 
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• To show that a partial order is not a lattice, it suffices to find a pair 

that does not have an lub or a glb (i.e., a counter-example) 

• For a pair not to have an lub/glb, the elements of the pair must first 

be incomparable (Why?) 

• You can then view the upper/lower bounds on a pair as a sub-Hasse 

diagram: If there is no maximum/minimum element in this sub-

diagram, then it is not a lattice 



Complete lattices 
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• Definition: 

A lattice A is called a complete lattice if every subset S of A admits a 

glb and a lub in A. 

 
 

• Exercise: 

Show that for any (possibly infinite) set E, (P(E),) is a complete 

lattice 

(P(E) denotes the powerset of E, i.e. the set of all subsets of E). 



Example 
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g 
 

Y 
 
 
 
 

 

a b 

L= {a,b,c,d,e,f,g} 

 ={(a,c), (a,e), (b,d), (b,f), (c,g), (d,g), (e,g), (f,g)}T 

(L,) is not a lattice: 

a and b are lower bounds of Y, but a and b are not comparable 

c d e f 



Exercise 
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• Prove that “Every finite lattice is a complete lattice”. 
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Example 
 

 
 
 
 

 

 
lub(Y) 

{1,2,3} 

 

{1,2} {1,3} {2,3} 
 
 
 

 

{1} {2} {3} 
 

L= ({1,2,3}) 

p =  

lub(Y) = Y 

glb(Y) = Y 

 
 
 

 

glb(Y) 

 



 
 

Y 



Example 
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-4 -3 -2 -1 0 1 2 3 4 

 
 
 
 

T 
 

L= Z  {T,} 



 n  Z :  p n p T 



Example 
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L= Z+ 6
 

p total order on Z+ 5
 

lub = max 
4
 

glb = min 
3 
2 

It is a lattice, but not complete: 
1
 

For instance, the set of even numbers has no lub 0 

 
 
 
 
 

37 



Example 
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T 
 
 
 

 

L= Z+  {T} 
6
 

p total order on Z+  {T} 
5
 

lub = max 
4
 

glb = min 
3 
2 

This is a complete lattice 
1
 

0 



Examples 
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L=Q (rational numbers) with p =  (total order) 

(Q,  ) is not a complete lattice 

The set {x  Q | x2 < 2} has upper bounds but there is no 
least upper bound in Q. 

 
 
 

 

 
 

L=R (real numbers) with p =  (total order) 

(R,  ) is not a complete lattice: 
for instance {x  R | x > 2} has no lub 

On the other hand, 
for each x<y in R, ([x,y],  ) is a complete lattice 
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• Theorem: 

Let (L, p) be a partial order. The following conditions are 

equivalent: 

1. L is a complete lattice 

2. Each subset of L has a least upper bound 

3. Each subset of L has a greatest lower bound 

 
 

• Proof: 

– 1  2 e 1  3 by definition 

– In order to prove that 2  1, let us define for each Y  L 

glb(Y) = lub({l L |  l’  Y : l  l’}) 
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upper bounds of Z 
 

glb(Y)= lub({l L |  l’  Y : l  l’}) 
{1,2,3} 

 

 

Y 
{1,2} 

 

{1,3} 
 

{2,3} 
 
 

 

lub(Z) {1} {2} {3} 
 
 
 

 

Z= {l L |  l’  Y : l  l’} 
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Functions on partial orders 

• Let (P,P) and (Q,Q) two partial orders. A function  from P to Q is 

said: 

 
 

• monotone (order preserving) if 

p1 P p2  p1 Q p2 


• embedding if 

p1 P p2  p1 Q p2


• Isomorphism if it is a surjective embedding 



Examples 
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c 

e 

d 

 
 
 
 
 

b d 1a

1d
a 1b1c

 1 is not monotone 

 
 
 
 
 
 
 

2d2e   is monotone, but it is not 
 b c 2

 

b c 2 2 

2a

a 

an embedding:2bQ2c 

but it is not true that bPc 



Examples 
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d 

e 

d 

 
 

4b

 
 
 
 
 

3e

b c 
3c3d

3a3b

a 

4d




b c 

 

a 4a














4c

 3 is monotone but it is not 

an embedding:3bQ3c 

but it is not true that bPc 

 
 
 

 4 is an embedding, but not 

an isomorphism. 



Isomorphism 
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g h 

f 
d e’ 

a 

 
 
 
 

j j’ 
 
 
 
 

i g’ 
i’ h’

 

 
d’ 

f’
 

e 
 
 

b b’ 

a’ 

 
c 

c’ 
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Monotone? Embedding? Isomorphism? 
 

 
  from (Z, ) to (Z, ), defined by: (x)=x+1 

 

 

 

  from((S), ) to 

1 

0 , defined by: 

(U)=1 if U is nonempty, ()=0. 

 

 
  from ((Z), ) to ((Z), ) , defined by: 

(U)={1} if 1  U 

(U)={2} if 2  U and 1 does not belong to U 

(U)=  otherwise 
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0 

Ascending chains 
 

 
• A sequence (ln)nN of elements in a partial order L is an 

ascending chain if 

n  m  ln lm 

 

• A sequence (ln)nN converges if and only if 

 n0N :  nN : n0  n  ln   ln 

 
• A partial order (L,) satisfes the ascending chain condition 

(ACC) iff each ascending chain converges. 



 

DISCRETE MATHEMATICS    BCA IV SEM 

Example 
 

 
 
 
 
 
 
 
 

 

 

• The set of even natural 
12 numbers satisfies the 

10 descending chain condition, 

8 
but not the ascending chain 
condition 

6 

4 

2 

0 



 

DISCRETE MATHEMATICS    BCA IV SEM 

Example 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

... 

• Infinite set 

• Satisfies both ACC and 
DCC 



Lattices and ACC 
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• If P is a lattice, it has a bottom element and satisfies ACC, tyen it is 

a complete lattice 

 
 

• If P is a lattice without infinite chains, then it is complete 



Continuity 
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(P,P)  (Q,Q) 

S 
(S) 

 

• In Calculus, a function is continuous if it preserves the limits. 

• Given two partial orders (P,P) and (Q,Q), a functoin  from P to Q 

is continuous id for every chain S in P 

 
lubS  lub{ (x) | xS } 

 
 
 
 
 
 



Fixpoints 
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• Consider a monotone function f: (P,P)  (P,P) on a partial 
order P. 

 
• An element x of P is a fixpoint of f if f(x)=x. 

• The set of fixpoints of f is a subset of P called Fix(f): 

 

Fix(f) ={ l  P | f(l)=l} 



Fixpoint on Complete Lattices 
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• Consider a monotone function f:LL on a complete lattice L. 

 
• Fix(f) is also a complete lattice: 

lfp(f) = glb(Fix(f))  Fix(f) 
gfp(f) = lub(Fix(f))  Fix(f) 

 
• Tarski Theorem: 

Let L be a complete lattice. If f:LL is monotone then 
lfp(f) = glb{ l  L | f(l)  l } 
gfp(f) = lub{ l  L | l  f(l) } 



Fixpoints on Complete Lattices 
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{ l  L | f(l) P l} 

 
Fix(f) ={ l  L | f(l)=l} 

 
 

gfp(f) = lub{ l  L | l  f(l) } 

lfp(f) = glb{ l  L | f(l)  l } 

 

{ l  L | l P f(l)} 



Kleene Theorem 
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• Let f be a monotone function: (P,P)  (P,P) on a complete lattice P. 

Let = n0 f 
n() 

 
– If Fix(f) then = lfp(f) 

 
– Kleene Theorem 

If f is continuous then the least fixpoint of f esists , and it is equal 

to 


